Structured sparse canonical correlation analysis for brain imaging genetics: an improved GraphNet method

نویسندگان

  • Lei Du
  • Heng Huang
  • Jingwen Yan
  • Sungeun Kim
  • Shannon L. Risacher
  • Mark Inlow
  • Jason H. Moore
  • Andrew J. Saykin
  • Li Shen
چکیده

MOTIVATION Structured sparse canonical correlation analysis (SCCA) models have been used to identify imaging genetic associations. These models either use group lasso or graph-guided fused lasso to conduct feature selection and feature grouping simultaneously. The group lasso based methods require prior knowledge to define the groups, which limits the capability when prior knowledge is incomplete or unavailable. The graph-guided methods overcome this drawback by using the sample correlation to define the constraint. However, they are sensitive to the sign of the sample correlation, which could introduce undesirable bias if the sign is wrongly estimated. RESULTS We introduce a novel SCCA model with a new penalty, and develop an efficient optimization algorithm. Our method has a strong upper bound for the grouping effect for both positively and negatively correlated features. We show that our method performs better than or equally to three competing SCCA models on both synthetic and real data. In particular, our method identifies stronger canonical correlations and better canonical loading patterns, showing its promise for revealing interesting imaging genetic associations. AVAILABILITY AND IMPLEMENTATION The Matlab code and sample data are freely available at http://www.iu.edu/∼shenlab/tools/angscca/ CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GN-SCCA: GraphNet Based Sparse Canonical Correlation Analysis for Brain Imaging Genetics

Identifying associations between genetic variants and neuroimaging quantitative traits (QTs) is a popular research topic in brain imaging genetics. Sparse canonical correlation analysis (SCCA) has been widely used to reveal complex multi-SNP-multi-QT associations. Several SCCA methods explicitly incorporate prior knowledge into the model and intend to uncover the hidden structure informed by th...

متن کامل

Interpretable whole-brain prediction analysis with GraphNet

Multivariate machine learning methods are increasingly used to analyze neuroimaging data, often replacing more traditional "mass univariate" techniques that fit data one voxel at a time. In the functional magnetic resonance imaging (fMRI) literature, this has led to broad application of "off-the-shelf" classification and regression methods. These generic approaches allow investigators to use re...

متن کامل

Joint sparse canonical correlation analysis for detecting differential imaging genetics modules

MOTIVATION Imaging genetics combines brain imaging and genetic information to identify the relationships between genetic variants and brain activities. When the data samples belong to different classes (e.g. disease status), the relationships may exhibit class-specific patterns that can be used to facilitate the understanding of a disease. Conventional approaches often perform separate analysis...

متن کامل

A Novel Structure-Aware Sparse Learning Algorithm for Brain Imaging Genetics

Brain imaging genetics is an emergent research field where the association between genetic variations such as single nucleotide polymorphisms (SNPs) and neuroimaging quantitative traits (QTs) is evaluated. Sparse canonical correlation analysis (SCCA) is a bi-multivariate analysis method that has the potential to reveal complex multi-SNP-multi-QT associations. Most existing SCCA algorithms are d...

متن کامل

Transcriptome-guided amyloid imaging genetic analysis via a novel structured sparse learning algorithm

MOTIVATION Imaging genetics is an emerging field that studies the influence of genetic variation on brain structure and function. The major task is to examine the association between genetic markers such as single-nucleotide polymorphisms (SNPs) and quantitative traits (QTs) extracted from neuroimaging data. The complexity of these datasets has presented critical bioinformatics challenges that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 32 10  شماره 

صفحات  -

تاریخ انتشار 2016